ERASMUS+ CBHE PROJECT

Reinforcing Non-University Sector at the Tertiary Level in Engineering and Technology to Support Thailand Sustainable Smart Industry

Applications of Optimization and Technology in Value Chain

Objectives

This module aims at developing the following competences:

- 1. Apply various optimization techniques to solve practical problems for the local community
- 2. Recommend digital technology for automated data-driven used in the real-world optimization models
- 3. Work with people in different functional areas as a team to solve the real-world optimization models toward the benefit of common goals.

Learning Outcomes

Upon the completion of this module, the trainees will be able to:

- 1. Show understanding of how to apply modeling concepts and mathematical optimization to obtain globally optimal solutions for small-size problems
- 2. Show understanding of how to apply meta-heuristic techniques to obtain good solutions for large- scale practical problems
- 3. Show understanding of how to write and execute the mathematical optimization model using professional optimization software
- 4. Develop mathematical models for real-world problems
- 5. Utilize appropriate optimization techniques
- 6. Appreciate the use of digital technology for automated data-driven used in the real-world optimization models
- 7. Participate actively in a group activity during training
- 8. Appreciate working with other people in different functional areas

Prerequisite: Operations Research

Outline:

Modeling concepts and mathematical optimization

- Mathematical notations
- o Linear Programming, Integer Programming, and Mixed Integer Programming formulations
- o An example of an optimization problem with different mathematical formulations
- Writing and executing the mathematical optimization model using professional optimization software
- Interpretation of the results obtained from professional optimization software
- Mathematical Modelling and Real-World Applications

Meta-heuristic techniques

Constructive heuristics: Concepts and its applications

CD-CTP-V1

ERASMUS+ CBHE PROJECT

Reinforcing Non-University Sector at the Tertiary Level in Engineering and Technology to Support Thailand Sustainable Smart Industry

- Meta-heuristic optimization techniques (Genetic Algorithm (GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO)) and illustrative applications of constructive heuristics, GA, DE, and PSO techniques
- Utilizing appropriate optimization techniques
- Illustrative applications for solving the real-world problem using a mathematical model, constructive heuristics, and GA, DE, and PSO techniques

Use of digital technology for automated data-driven used in the real-world optimization models

- Introduction to digital technologies for automated data-driven used in the real-world optimization models
- Illustrations of the uses of digital technology for automated data-driven used in the realworld
- Introduction of Ice Transportation and Chambermaid allocation and scheduling software optimization models
- o Illustration of how to design digital technology for automated data-driven used in the real-world optimization models
- o Introduction of Ice Transportation and Chambermaid allocation and scheduling software

Learning Activities:

- Short lectures
- Group work
- Workshop
- Group discussion
- Group presentation

Time Distribution and Study Load:

Training: 15hoursCoaching: 30 hours

• Group project: 60 hours

Assessments:

- Exam
- Class discussion and participation
- Presentations
- A pre-test and a post-test of workshops
- Group project

Developer(s): Dr. Kanchana Sethanan (KKU, Thailand)

CD-CTP-V1 2